The trees with the second smallest normalized Laplacian eigenvalue at least 1−32
نویسندگان
چکیده
منابع مشابه
The smallest eigenvalue of the signless Laplacian
Recently the signless Laplacian matrix of graphs has been intensively investigated. While there are many results about the largest eigenvalue of the signless Laplacian, the properties of its smallest eigenvalue are less well studied. The present paper surveys the known results and presents some new ones about the smallest eigenvalue of the signless Laplacian.
متن کاملThe (normalized) Laplacian Eigenvalue of Signed Graphs
Abstract. A signed graph Γ = (G, σ) consists of an unsigned graph G = (V, E) and a mapping σ : E → {+,−}. Let Γ be a connected signed graph and L(Γ),L(Γ) be its Laplacian matrix and normalized Laplacian matrix, respectively. Suppose μ1 ≥ · · · ≥ μn−1 ≥ μn ≥ 0 and λ1 ≥ · · · ≥ λn−1 ≥ λn ≥ 0 are the Laplacian eigenvalues and the normalized Laplacian eigenvalues of Γ, respectively. In this paper, ...
متن کاملFat Hoffman graphs with smallest eigenvalue at least $-1-τ$
In this paper, we show that all fat Hoffman graphs with smallest eigenvalue at least −1−τ , where τ is the golden ratio, can be described by a finite set of fat (−1 − τ)-irreducible Hoffman graphs. In the terminology of Woo and Neumaier, we mean that every fat Hoffman graph with smallest eigenvalue at least −1−τ is anH-line graph, where H is the set of isomorphism classes of maximal fat (−1−τ)-...
متن کاملOn distance-regular graphs with smallest eigenvalue at least -m
A non-complete geometric distance-regular graph is the point graph of a partial geometry in which the set of lines is a set of Delsarte cliques. In this paper, we prove that for fixed integer m ≥ 2, there are only finitely many non-geometric distance-regular graphs with smallest eigenvalue at least −m, diameter at least three and intersection number c2 ≥ 2.
متن کاملThe third smallest eigenvalue of the Laplacian matrix
Let G be a connected simple graph. The relationship between the third smallest eigenvalue of the Laplacian matrix and the graph structure is explored. For a tree the complete description of the eigenvector corresponding to this eigenvalue is given and some results about the multiplicity of this eigenvalue are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2017
ISSN: 0166-218X
DOI: 10.1016/j.dam.2016.12.010